首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3978篇
  免费   137篇
  国内免费   2篇
电工技术   52篇
综合类   21篇
化学工业   1188篇
金属工艺   105篇
机械仪表   53篇
建筑科学   192篇
矿业工程   5篇
能源动力   80篇
轻工业   283篇
水利工程   10篇
石油天然气   6篇
无线电   221篇
一般工业技术   732篇
冶金工业   660篇
原子能技术   45篇
自动化技术   464篇
  2021年   59篇
  2020年   34篇
  2019年   58篇
  2018年   54篇
  2017年   48篇
  2016年   81篇
  2015年   80篇
  2014年   96篇
  2013年   146篇
  2012年   163篇
  2011年   192篇
  2010年   137篇
  2009年   136篇
  2008年   165篇
  2007年   171篇
  2006年   144篇
  2005年   114篇
  2004年   115篇
  2003年   94篇
  2002年   88篇
  2001年   98篇
  2000年   96篇
  1999年   99篇
  1998年   180篇
  1997年   118篇
  1996年   109篇
  1995年   86篇
  1994年   69篇
  1993年   57篇
  1992年   48篇
  1991年   51篇
  1990年   54篇
  1989年   72篇
  1988年   59篇
  1987年   44篇
  1986年   37篇
  1985年   33篇
  1984年   31篇
  1983年   35篇
  1982年   37篇
  1981年   29篇
  1980年   29篇
  1979年   32篇
  1978年   36篇
  1977年   34篇
  1976年   61篇
  1975年   42篇
  1974年   43篇
  1973年   46篇
  1970年   23篇
排序方式: 共有4117条查询结果,搜索用时 466 毫秒
81.
We describe a performance study of a multi-zone application benchmark implemented in several OpenMP approaches that exploit multi-level parallelism and deal with unbalanced workload. The multi-zone application was derived from the well-known NAS Parallel Benchmarks (NPB) suite that involves flow solvers on collections of loosely coupled discretization meshes. Parallel versions of this application have been developed using the Subteam concept and Workqueuing model as extensions to the current OpenMP. We examine the performance impact of these extensions to OpenMP and compare with hybrid and nested OpenMP approaches on several large parallel systems.  相似文献   
82.
83.
84.
85.
In searching to attain optimum conditions for the controlled release of nuclear energy by fusion processes, the stationary confinement of low-pressure ring-shaped plasmas by strong magnetic fields is now regarded as the most promising approach. We consider a number of fuel combinations that could be operated in such low-beta reactor systems and look upon the relevant fuel reserves. The classical D-T-Li cycle will be used as a standard and is extensively discussed therefore. It could supply most of mankind's future long-term power needs—but only on condition that the required lithium fuel can be extracted from seawater at reasonable expenses. The estimated landbound lithium reserves are too small to that end, they will last for about 500 years at most, depending on forecasts of future energy consumption and on assumptions about exploitable resources. Recovery of lithium from seawater would extend the possible range by a factor of 300 or so, provided that extraction technologies which are at present available in the laboratory, could be extended to a very large and industrial scale. Deuterium is abundant on earth but D-D fusion is difficult, if not impossible, to be achieved in the low-beta systems presently investigated for D-T fusion. The same arguments apply to so-called advanced concepts, such as the D-3He and the D-6Li cycles.  相似文献   
86.
Ultrasonic surface waves are suitable for the characterization of surface hardened materials. This is shown on laser hardened turbine blades. The martensitic microstructure within the surface layer of surface hardened steels has a lower surface wave propagation velocity than the annealed or normalized substrate material. Because the propagation velocity depends on the ratio of layer thickness to wavelengthd/, its measurement allows the determination of the hardening depth. If the surface wave frequency is high enough, the surface wave propagates mainly within the hardened layer. A correlation of the surface wave velocity to the surface hardness has been found. Because the variation of the surface velocity in hardened steels is small, a high measurement accuracy is necessary to obtain the interesting hardening parameters with sufficient certainty. Therefore, a measuring arrangement has been developed where laser pulses, guided by optical fibers to the surface hardened structure, generate simultaneously surface wave pulses at two different positions. The two ultrasonic pulses are received by a piezoelectric transducer. The surface wave velocity is obtained from the time delay between these pulses which is determined by the cross-correlation method. To evaluate simultaneously surface waves with different penetration depths from the same signal acquisition, digital filtering has been used in connection with the cross-correlation.  相似文献   
87.
Osteocytes—the central regulators of bone remodeling—are enclosed in a network of microcavities (lacunae) and nanocanals (canaliculi) pervading the mineralized bone. In a hitherto obscure process related to aging and disease, local plugs in the lacuno‐canalicular network disrupt cellular communication and impede bone homeostasis. By utilizing a suite of high‐resolution imaging and physics‐based techniques, it is shown here that the local plugs develop by accumulation and fusion of calcified nanospherites in lacunae and canaliculi (micropetrosis). Two distinctive nanospherites phenotypes are found to originate from different osteocytic elements. A substantial deviation in the spherites' composition in comparison to mineralized bone further suggests a mineralization process unlike regular bone mineralization. Clearly, mineralization of osteocyte lacunae qualifies as a strong marker for degrading bone material quality in skeletal aging. The understanding of micropetrosis may guide future therapeutics toward preserving osteocyte viability to maintain mechanical competence and fracture resistance of bone in elderly individuals.  相似文献   
88.
During heat treatment processes, especially during quenching, cracks may form because of the presence of high thermal and mechanical stresses and strains. Notwithstanding the fact that increasingly detailed modelling for heat treatment is being performed (considering, i.a., grain size, creep and transformation plasticity), homogeneous microstructures are still normally assumed. Chemical and hence structural inhomogeneities are not commonly explicitly considered, which is especially accentuated in the case of real parts simulation because of the resulting numerical problem's size. Intensive quenching on a cylindrical specimen of 100Cr6 (SAE) steel is proposed here to experimentally investigate the microcrack generation. A finite element based model is proposed to numerically evaluate the fracture behaviour in a two‐step simulation. First, by solving the quenching problem in direct correspondance with the experimental test performed, and second, by studying the mesoscale response taking into account the influence of second phase particles in a representative volume element based approach. The maximum principal stress criterion is used to trigger the fracture by means of the extended finite element method at the mesoscale. The trend to form cracks in the surface region, experimentally observed, has been well captured by the model. The influence of carbides sizes and content on the mesoscale fracture response has been numerically analysed as well. A good agreement has been reached between the simulations and the experimental results, exhibiting the potential of the introduced approach to be used as a failure prediction methodology.  相似文献   
89.
Given the constantly raising world-wide energy demand and the accompanying increase in greenhouse gas emissions that pushes the progression of climate change, the possibly most important task in future is to find a carbon-low energy supply that finds the right balance between sustainability and energy security. For renewable energy generation, however, especially the second aspect turns out to be difficult as the supply of renewable sources underlies strong volatility. Further on, investment costs for new technologies are so high that competitiveness with conventional energy forms is hard to achieve. To address this issue, we analyze in this paper a non-autonomous optimal control model considering the optimal composition of a portfolio that consists of fossil and renewable energy and which is used to cover the energy demand of a small country. While fossil energy is assumed to be constantly available, the supply of the renewable resource fluctuates seasonally. We further on include learning effects for the renewable energy technology, which will underline the importance of considering the whole life span of such a technology for long-term energy planning decisions.  相似文献   
90.
The end market for transparent flexible barrier films is larger than for metallized films. Presently, the market is still dominated by polymeric barrier layers but the used chemicals may be harmful for the environment. An alternative would be transparent thin layers deposited by vacuum deposition techniques using reactive processes. Ceramic materials like silicon oxide or aluminum oxide are used having a film thickness of just ~10 nm, a coating uniformity of +/?5% across and along the film at a barrier performance below 2.0 sccm/m2d for oxygen transmission rate (OTR) and below 1.0 g/m2d for water vapor transmission rate (WVTR) on PET substrates. In this paper, details will be provided about the deposition processes for these barrier layers using thermal evaporation, plasma‐assisted thermal evaporation as well as deposition by electron beam evaporation. An important factor for these high barrier transparent coatings is also to withstand the downstream processes in the whole packaging stream like slitting, lamination, printing etc. One solution is to protect the barrier layers by a Topcoat. For example, off‐line deposition of lacquers is used in field but the market penetration is low due to high process and material costs. An in‐situ Topcoat deposition is a smart solution to overcome this issue saving time and costs. Such an approach will be also described in the presentation and the impact on the performance of the final package will be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号